[:pb]Authors: Gomes, L. R. ; Low, J. N. ; Van Mourik, T.; Früchtl, H.; De Souza, M. V. N. ; Da Costa, C. F. ; Wardell, J. L.
Source: Zeitschrift Fur Naturforschung Section B-A Journal Of Chemical Sciences, v. 74, p. 319-334, 2019
Publisher: De Gruyter
Abstract
The crystal structures and Hirshfeld surface analyses are reported for four aldoximes, (E)-X–C6H4CH=N–OH [X = 3-Cl (1), 4-F (2), 2-O2N (3) and 4-O2N (4)]. The strong classical O–H · · · N hydrogen bonds involving the oxime group generate C(3) chains in compound 1, in contrast to the R22(6) dimers formed in compounds 2–4; such arrangements have been shown to be the most frequently found for oximes other than salicylaldoximes (2-hydroxybenzaldehyde oximes). In general, weaker intermolecular interactions involving the X substituents, as well as C–H · · · O and π · · · π interactions have significant effects on the supramolecular arrays generated in the aggegation. A further important interaction in compound 1, and to a lesser extent in compound 4, is a π(C=N) · · · π(phenyl) molecular stacking. A data base search has indicated that short Cg(C=N) · · · Cg(phenyl) distances, <3.3 Å (Cg = centre of gravity), have been found in various compounds, including other oximes. A theoretical study was carried out starting from the crystal structure data of compound 1, with optimisation at the BLYP-D3/def2-DZVP level, as well as at the higher PBE0/ma-def2-TZVP level. Breakdown of the interaction energy into separate contributions was achieved using SAPT (using the jun-cc-pvdz basis set). Overall, the calculations indicate that the π(C=N) ·· · π(phenyl) interaction is attractive, with a magnitude of 14–18 kJ mol−1.
Keywords: π(C=N)···π(phenyl) interactions, aldoximes, crystal structures, quantum chemical calculations
Document Type: Research Article
DOI: 10.1515/znb-2018-0222
Publication date: 2 de abril de 2019[:]